Short Note β -delayed proton decays of ⁹³Pd and ⁹²Rh

S.-W. Xu^a, Z.-K. Li, Y.-X. Xie, X.-D. Wang, B. Guo, C.-G. Leng, and Y. Yu

Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, PRC

Received: 13 April 2001 / Revised version: 16 August 2001 Communicated by J. Äystö

Abstract. β -delayed proton precursors ⁹³Pd and ⁹²Rh were produced by the irradiation of ⁵⁸Ni with a ⁴⁰Ca beam, and identified using proton-gamma coincidence measurements in combination with a helium-jet fast tape transport system. The half-lives of ⁹³Pd and ⁹²Rh were determined to be 1.3(2), 3.0(8) s, respectively. The measured energy spectrum of β -delayed protons and the estimated relative branching ratios to the final states in the daughter nuclei were fitted by a statistic model calculation, and then the ground-state spin and parity of ⁹³Pd were assigned as $9/2^{\pm}$.

PACS. 23.40.-s Beta decay; double beta decay; electron and muon capture – 21.10.Tg Lifetimes – 27.60.+j $90 \le A \le 149$

The very neutron-deficient nucleus ⁹³Pd with $T_z = 1/2$ was predicted to be a probable waiting point in the astrophysical rp-process [1]. Recently, the β decay of 93 Pd, including β -delayed proton (β p) decay and (EC + β^+) decay, was observed by Schmidt et al. [2]. In order to check the shell model calculation, experimental determination of its ground-state spin and parity is necessary. The in-beam γ study of ⁹²Rh was reported and its ground state was assigned as 6^+ by Zhou *et al.* [3]. So far, the decay property of 92 Rh was not known yet. In this work, 93 Pd and 92 Rh were produced via the 58 Ni(40 Ca, 2p3n) and 58 Ni(40 Ca, 3p3n) fusion-evaporation reactions, respectively. In combination with a He-jet tape transport system, the protongamma coincidence measurements proposed in our previous studies [4–6] were employed to identify the βp precursors. Namely, the γ transitions between the low-lying states in the daughter nucleus ⁹²Ru (⁹¹Tc) in coincidence with βp were used to identify the precursor ⁹³Pd (⁹²Rh).

The experiment described here was carried out at the Sector-Focusing Cyclotron in the Institute of Modern Physics, Lanzhou, China. A 232 MeV ⁴⁰Ca¹²⁺ beam from the cyclotron entered a target chamber, passing through a 1.89 mg/cm² thick Havar window and 2 cm of helium gas at 1 atm, and finally bombarded a self-supported ⁵⁸Ni target (98% enriched) with a thickness of 2.1 mg/cm². The target was mounted on a copper wheel surrounded by a cooling device. The beam intensity was about 40 p nA. We used a He jet in combination with a tape transport system to move the radioactivity into a shielded counting room for $p-\gamma_1(X)-\gamma_2(X)-t$ coincidence measurements periodically. The irradiation time, tape moving time, waiting time, and accumulation time were 2.90, 0.18, 0.02, and 2.88 s, respectively. PbCl₂ was used as aerosol at 430°C. Two 570 mm² × 350 μ m totally depleted silicon surface barrier detectors were used for proton measurements, and located on two opposite sides of the movable tape. Behind each silicon detector there was a coaxial HpGe(GMX) detector for $\gamma(X)$ measurements. Energy and time spectra of $\gamma(X)$ -ray and proton were taken in coincidence mode.

The measured $\gamma(X)$ -ray spectrum gated on 2.4– 5.0 MeV protons is shown in fig. 1. The upper limit of the energy signals coming from the pile-up of positrons in the silicon detectors was tested to be 2.5 MeV. Therefore, the intense lines in fig. 1 were not the γ transitions directly from (EC + β^+) decay, but the γ transitions which follow the β -delayed proton emissions. All of the intense γ lines in fig. 1 were assigned to their βp precursors except the X-rays and the 511 keV γ -ray. Among them, the 865 keV and 991 keV γ lines were assigned to the $2^+ \rightarrow 0^+$ and $4^+ \rightarrow 2^+$ transitions in the daughter nucleus 92 Ru [7] of the proton emitter 93 Rh produced via EC/β^+ decay of ⁹³Pd. We checked the lower-energy part of the measured $\gamma(X)$ -ray spectrum (with energy from 30 to 500 keV) gated on 2.5–6.4 MeV protons. No clear indication of the existence of the intense β -delayed γ lines of 239.7 and 381.7 keV directly produced via the (EC + β^+) decay of ${}^{93}Pd$ [2] could be seen. Therefore, in fig. 1 the contribution coming from a weak γ line of 864.1 keV directly produced via the (EC + β^+) decay of ⁹³Pd [2] can be ignored. The decay curve of the 865 keV γ line coincident with 2.4–5.0 MeV protons, from which the half-life of 93 Pd was extracted to be 1.3 ± 0.2 s, is shown in the

^a e-mail: xsw@ns.lzb.ac.cn

Fig. 1. The measured γ -ray spectrum in coincidence with 2.4 to 5.0 MeV protons. The intense peaks in fig. 1 are labeled with their energies in keV and their β -delayed proton precursors.

Table 1. Calculation of the relative branching ratios to different final states in the daughter nucleus 92 Ru and the absolute proton intensities via β -delayed proton decay of 93 Pd for various values of the initial spin and parity of 93 Pd by using the revised statistical model [10,11].

Initial spin	Relative branching ratios to the final state $(\%)$				Absolute
and parity	G. S.	856 keV	1856 keV	2673 keV	intensities
of ^{93}Pd	(0^{+})	(2^{+})	(4^{+})	(6^{+})	
$1/2^{-}$	96.6	3.4	0.0	0.0	$0.13 imes 10^0$
$1/2^+$	92.2	7.8	0.0	0.0	0.19×10^0
$3/2^{-}$	84.2	15.7	0.1	0.0	0.85×10^{-1}
$3/2^+$	83.2	16.7	0.0	0.0	0.15×10^0
$5/2^{-}$	74.8	24.8	0.4	0.0	0.59×10^{-1}
$5/2^+$	65.7	33.0	1.3	0.0	0.86×10^{-1}
$7/2^{-}$	49.3	47.1	3.5	0.1	0.25×10^{-1}
$7/2^+$	45.3	48.7	6.0	0.0	0.48×10^{-1}
$9/2^{-}$	48.6	43.2	7.9	0.3	0.15×10^{-1}
$9/2^+$	10.5	68.7	19.4	1.4	0.17×10^{-1}
$11/2^{-}$	9.2	61.1	26.2	3.6	0.40×10^{-2}
$11/2^+$	4.6	52.7	35.0	7.7	0.75×10^{-2}

inset of fig. 2. This result is consistent with the predicted half-life of 1.4 s calculated by Herndl and Brown [8] using a shell model calculation, and is in reasonable agreement with the previous experimental result 0.9 ± 0.2 s reported in ref. [2]. However, the measured half-life of ⁹³Pd is longer than another predicted β decay half-life: 0.22 s by Möller *et al.* [9] using a macroscopic-microscopic mass model. In fig. 1 the intensities of 865 and 991 keV γ lines, as well as the background level at 817 keV, which corresponds to the $6^+ \rightarrow 4^+$ transition in ⁹²Ru [7], were used to estimate the relative branching ratios of β p to different final states in ⁹²Ru: $100(2^+)$, $23 \pm 5(4^+)$, and $\leq 3(6^+)$. The proton energy spectrum gated on the 865 keV γ line is shown in fig. 2. The component with energy lower than 2.2 MeV in

the spectrum was attributed to the pile-up of positrons in the silicon detectors. On the other hand, the energy spectrum of βp and the branching ratios of βp to different final states in ⁹²Ru were calculated with a revised statistical model [10,11]. The structureless β strength function predicted by the gross theory and the energy level density based on the back-shifted Fermi gas assumption were used in the model calculation. The $Q_{\rm EC}$ -value of 9.53 MeV and the $B_{\rm p}$ of 2.08 MeV in the calculation were taken from ref. [12]. The spins and parities of ⁹³Pd most consistent with the experimental results are $9/2^{\pm}$, which give the final-state branching ratios of βp of 43.2% and 68.7%(2⁺), 7.9% and 19.4%(4⁺), as well as 0.3% and 1.4%(6⁺) (see table 1), and reproduce the experimental energy spectrum

Fig. 2. Observed energy spectrum of β -delayed protons gated on the 865 keV γ -ray. The solid and dashed curves were calculated using the statistical model (see text). The inset is the decay curve of the 865 keV line coincident with 2.4–5.0 MeV protons.

of βp reasonably well (fig. 2). The assigned ground-state spins and parities of ⁹³Pd are in good agreement with the prediction of $9/2^+$ by the shell model calculation [8] and by Audi et al. [12] based on systematic trends. According to the simple EC/β^+ decay scheme of ⁹³Pd without the branching ratio decayed to the ground state of 93 Rh proposed by Schmidt (fig. 3 and table 1 in ref. [2]), the upper limit of absolute intensity of 864.1 keV γ transition in ⁹³Rh per ⁹³Pd decay was estimated to be $9 \pm 2\%$. On the other hand, assuming the ground-state spin and parity of ⁹³Pd as $9/2^+$, the absolute intensity of the β delayed proton decay of 93 Pd was calculated to be 1.7%by using the statistical model (see table 1). Finally, the total branching ratio leading to the 865 keV γ transition from the lowest-energy 2^+ state to the 0^+ ground state in 92 Ru, following the proton emission in the β -delayed proton decay of 93 Pd, was estimated to be 1.5%. Therefore, the 864.1 keV β -delayed γ transition in the EC/ β^+ decay of ⁹³Pd reported in ref. [2] might be the 865 keV γ transition following the β -delayed proton decay of ⁹³Pd observed in this work.

According to the in-beam study of ⁹¹Tc [13], the 893 keV γ line in fig. 1 was assigned to the $13/2^+ \rightarrow 9/2^+$ transition in the daughter nucleus ⁹¹Tc of the proton emitter 92 Ru produced via EC/ β^+ decay of 92 Rh. The intense $13/2^+ \rightarrow 9/2^+$ transition indicates that the ground-state spin of 92 Rh should be equal to or larger than 5. This conclusion is consistent with the previous experimental result of 6^+ reported in ref. [3], however is contradicted by the shell model prediction of 2^+ [8]. The βp energy spectrum of 92 Rh gated on the 893 keV γ line is shown in fig. 3. The component with energy lower than 2.2 MeV in the spectrum was attributed to the pile-up of positrons in the silicon detectors. The decay curve of the 893 keV γ line coincident with 2.4–5.0 MeV protons, from which the half-life of 92 Rh was extracted to be 3.0 ± 0.8 s, is shown in the inset of fig. 3. The extracted half-life is in reasonable agreement with the prediction of 4.3 s reported in ref. [8], however, is longer than the predicted β decay half-lives:

Fig. 3. Observed energy spectrum of β -delayed protons gated on the 893 keV γ -ray. The inset is the decay curve of the 893 keV line coincident with 2.4–5.0 MeV protons.

1.1 s by Horiguchi *et al.* [14] using the gross theory and 0.35 s by Möller *et al.* [9].

This work was supported by the Major State Basic Research Development Program (G2000077402) the National Natural Science Foundation of China (19975057 and 10005011) and the Chinese Academy of Sciences.

References

- H. Schatz, A. Aprahamian, J. Görres *et al.*, Phys. Rep. 294, 167 (1998).
- K. Schmidt, C. Mazzocchi, R. Borcea *et al.*, Eur. Phys. J. A 8, 303 (2000).
- S.-H. Zhou, Z.-H. Li, X.-M. Li *et al.*, Chin. Phys. Lett. 16, 18 (1999).
- S.-W. Xu, Z.-K. Li, Y.-X. Xie *et al.*, Phys. Rev. C **60**, 061302(R) (1999).
- S.-W. Xu, Y.-X. Xie, Z.-K. Li *et al.*, Z. Phys. A **356**, 227 (1996).
- Z.-K. Li, S.-W. Xu, Y.-X. Xie *et al.*, Phys. Rev. C 56, 1157 (1997).
- È. Nolte, G. Korschinek, U. Heim, Z. Phys. A 298, 191 (1980).
- 8. H. Herndl, B.A. Brown, Nucl. Phys. A 627, 35 (1997).
- P. Möller, J.R. Nix, K.-L. Kratz, At. Data Nucl. Data Tables 66, 131 (1997).
- P. Hornshoj, K. Wilsky, P.G. Hansen *et al.*, Nucl. Phys. A 187, 609 (1972).
- 11. J.C. Hardy, Phys. Lett. B 109, 242 (1982).
- G. Audi, O. Bersillon, J. Blachot, A.H. Wapstra, Nucl. Phys. A 624, 1 (1997).
- D. Rudolph, C.J. Gross, A. Harder *et al.*, Phys. Rev. C 49, 66 (1994).
- T. Horiguchi, T. Tachibana, J. Katakura, *Chart of the Nuclides* (1996).